Permutation-Invariant Constant-Excitation Quantum Codes for Amplitude Damping
نویسندگان
چکیده
منابع مشابه
Optimal quantum codes for preventing collective amplitude damping
Collective decoherence is possible if the departure between quantum bits is smaller than the effective wave length of the noise field. Collectivity in the decoherence helps us to devise more efficient quantum codes. We present a class of optimal quantum codes for preventing collective amplitude damping to a reservoir at zero temperature. It is shown that two qubits are enough to protect one bit...
متن کاملPermutation codes invariant under isometries
The symmetric group Sn on n letters is a metric space with respect to the Hamming distance. The corresponding isometry group is well known to be isomorphic to the wreath product Sn oS2. A subset of Sn is called a permutation code or a permutation array, and the largest possible size of a permutation code with minimum Hamming distance d is denoted by M(n, d). Using exhaustive search by computer ...
متن کاملQuantum discord protection from amplitude damping decoherence.
Entanglement is known to be an essential resource for many quantum information processes. However, it is now known that some quantum features may be acheived with quantum discord, a generalized measure of quantum correlation. In this paper, we study how quantum discord, or more specifically, the measures of entropic discord and geometric discord are affected by the influence of amplitude dampin...
متن کاملPermutationally Invariant Codes for Quantum Error Correction
A permutationally invariant n-bit code for quantum error correction can be realized as a subspace stabilized by the non-Abelian group Sn. The code corresponds to bases for the trivial representation, and all other irreducible representations, both those of higher dimension and orthogonal bases for the trivial representation, are available for error correction. A number of new (non-additive) cod...
متن کاملEntangling power of permutation-invariant quantum states
We investigate the von Neumann entanglement entropy as function of the size of a subsystem for permutation invariant ground states in models with finite number of states per site, e.g., in quantum spin models. We demonstrate that the entanglement entropy of n sites in a system of length L generically grows as log2 2 en L−n /L +C, where is the on-site spin and C is a function depending only on m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2020
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2019.2956142